УДК 621.642.39.03

ПРИМЕНЕНИЕ СТРУЙНЫХ СМЕСИТЕЛЕЙ ДЛЯ ПОДГОТОВКИ СЫРЬЯ УСТАНОВОК ПЕРВИЧНОЙ ПЕРЕРАБОТКИ НЕФТИ

Гумеров Артур Ильгизович аспирант кафедры «Нефтехимия и химическая технология» Сидоров Георгий Маркелович профессор кафедры «Технология нефти и газа» Мусаева Радмила Равилевна магистрант кафедры «Технология нефти и газа»

APPLICATION OF JET MIXERS FORPREPARATION OF RAW MATERIALS FOR PRIMARY PROCESSING PLANTS OIL REFINING

Gumerov Artur Ilgizovich
Post-graduate student of
the Department of Petrochemistry and Chemical Technology»
Sidorov Georgy Markelovich
Professor of the Department "Oil and Gas Technology»
Musaeva Radmila Ravilevna
Undergraduate student
of the Department_"Oil and Gas Technology»
DOI: 10.31618/nas.2413-5291.2021.2.68.448

АННОТАЦИЯ

Был рассмотрен оптимальный выход светлых нефтепродуктов при первичной переработке нефти. Для достижения высокой энергоэффективности нужно компаундировать нефть в резервуаре с помощью мешалок.

Для этого были исследованы имеющиеся пропеллерные мешалки и выявлены их недостатки. К недостаткам относятся: высокие затраты на ремонт, наличие электродвигателя, который увеличивает пожароопасность производства, возникновение осевых нагрузок в результате вращения и забивание примесей в лопастях пропеллера. Компенсировать недостатки пропеллерных мешалок может струйный смеситель.

Проведено моделирование с использованием программного комплекса ANSYS CFX. Разработаны модели для: циклического перемешивания; перемешивания пропеллерной мешалкой; перемешивания струйной мешалкой.

Выполнен прочностной расчет с модулем ANSYS – StaticStructural с импортированными данными из ANSYSCFX для пропеллерной и струйной мешалки.

Выявлено, что струйный смеситель при его несложной конструкции и простой эксплуатацией в сравнении с другими методами компаундирования, позволяет достигать лучшего перемешивания и меньших нагрузок на резервуар.

ABSTRACT

In the oil and gas industry, bottom sediments are deposited in reservoirs, which reduce the efficiency of oil refining.

The optimal yield of light oil products during primary oil refining was considered. To achieve high energy efficiency, it is necessary to compound the oil in the tank using agitators.

The available propeller agitators are considered, and their shortcomings are revealed. The disadvantages include: high repair costs, the presence of an electric motor that increases the fire hazard of production, the occurrence of axial loads as a result of rotation and clogging of impurities in the propeller blades. A jet mixer can compensate for the disadvantages of propeller agitators.

The simulation was performed using the ANSYS CFX software package. Models have been developed for: cyclic mixing; mixing with a propeller agitator; mixing with a jet agitator.

A strength calculation was performed with the ANSYS-Static Structural module with imported data from ANSYS CFX for the propeller and jet agitator.

It is revealed that the jet mixer, with its simple design and operation in comparison with other compounding methods, allows to achieve better mixing and lower loads on the tank.

Ключевые слова: пропеллерная мешалка, струйная мешалка, приемный резервуар, установка первичной переработки нефти, подготовка нефти, компаундирование, увеличение выхода продуктов.

Keywords:propeller agitator, jet agitator, receiving tank, primary oil refining unit, oil preparation, compounding, increase in product yield.

В настоящее время установка первичной переработки нефти часто работает не на полную мощность. Для улучшения выхода продуктов, необходимо смешивать тяжелую, среднюю и легкую фракции на начальном этапе — в приемном резервуаре, который служит для предварительного отстаивания сырья и поддержания необходимого количества нефти при работе установки, и в случае прекращения подачи нефти, способствует бесперебойной подаче сырья на прием сырьевых насосов[10].

К светлым нефтепродуктам относятся бензин, керосин и дизельное топливо. Получение соответствующих фракций происходит при начальной перегонке нефти.

Сумма выхода светлых нефтепродуктов на установке АВТ должна быть в диапазоне от 40 до 60 %. При выходе светлых нефтепродуктов меньше 40% - установка АВТ загружена не полностью. При выходе светлых нефтепродуктов больше 60% - уменьшается выход мазута из установки АВТ, значит, становится меньше гудрона и уменьшается загруженность установок замедленного коксования, термического крекинга и установки производства битума[10].

изменения соотношения выхода установку **ABT** добавляют продуктов на газоконденсат. При этом вакуумная трубчатка работает хуже, потому при добавлении газоконденсата его нужно компаундировать с основной смесью. Компаундирование производится с помощью мешалок [2-9].

Для достижения высокой энергоэффективности, донные отложения нужно вовлекать в среднюю и легкую нефть. Для этого подходит установка мешалок, которые монтируются через штуцер резервуара [4].

Мешалки, установленные в приемном резервуаре, помогают вовлекать тяжелую нефть, смешивая ее с легкой. Это уменьшает энергозатраты и увеличивает эффективность первичной переработки нефти[3].

Существующие пропеллерные мешалки имеют лопасти, в которых застаиваются тяжелые фракции нефти, поэтому эффективность таких мешалок снижается. Также, лопасти пропеллера – 500-600 мм оказывают дополнительное давление на стенку резервуара из-за осевого усилия, возникающего при вращении. Из-за подвижных элементов ремонт пропеллерных мешалок дорогостоящий, а электропривод повышает пожароопасность производства[5,8]. Компенсировать недостатки пропеллерных мешалок может струйный смеситель[2].

Для всех моделей принят резервуар объемом 10000 м³ по ГОСТ 31385-2016 «Резервуары вертикальные цилиндрические стальные для нефти и нефтепродуктов. Общие технические условия»[1].

Диаметр резервуара: D = 28,5 м;

Высота резервуара: Н = 18 м.

Гидродинамические расчеты пропеллерных мешалок и струйных смесителей производятся с одинаковой скоростью на входе, чтобы найти влияние конструкции и метода перемешивания жидкости в резервуаре на гидродинамические показатели.

Граничные условия:

- вход: скорость потока 2,5 м/с
- среда нефть с плотностью 900 кг/м^3

В качестве модели взяты четырех-лопастные пропеллерные мешалки, расположенные под 45° с трех сторон (Рисунок 1)

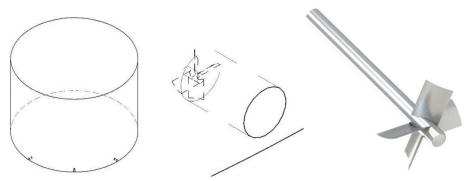


Рисунок 1 – Модель резервуара с пропеллерными мешалками

Линии тока скорости потока и генерация турбулентной энергии в резервуаре с

пропеллерными мешалками продемонстрированы на рисунке 2.

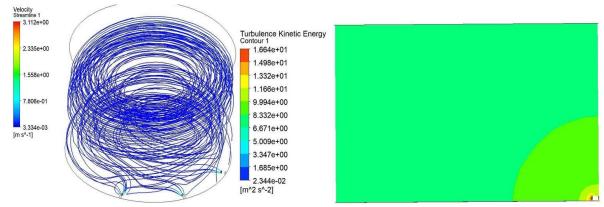


Рисунок 2. Линии тока скорости потока и генерация турбулентной энергии в резервуаре с пропеллерными мешалками

Среднее значение турбулентной энергии 9,04 ${\rm M}^2/{\rm c}^2$.

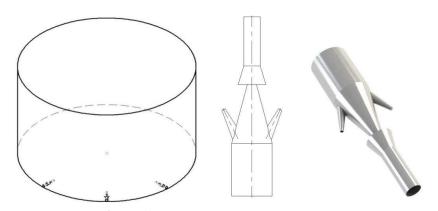


Рисунок 3 – Модель резервуара со струйным смесителем

Линии тока скорости потока и генерация турбулентной энергии в резервуаре со струйными мешалками показаны на рисунке 4.

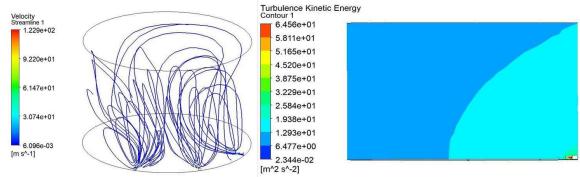


Рисунок 4. Линии тока скорости потока и генерация турбулентной энергии в резервуаре с смесительными мешалками

Среднее значение турбулентной энергии 15,09 ${\rm M}^2/{\rm c}^2$.

Для проведения прочностного расчета воспользуемся модулем ANSYS – StaticStructural.

Построена 3D-модель стенки резервуара вертикального стального объемом $10000~{\rm M}^3$ по ГОСТ 31385-2016 [1]. Толщина стенки 10 мм, наружный диаметр — 28,7 м, высота — 18 м.

Для анализа влияния вида перемешивающего устройства, перенесем результаты расчета модуля CFX в модуль StaticStaticStructural.

Задана опорная поверхность— FixedSupport, с указанием нижней грани стенки резервуара. Импортированы давления на стенку из модуля CFX.

Полученные деформации для пропеллерной и смесительной мешалок представлены на рисунке 5 и рисунке 6.

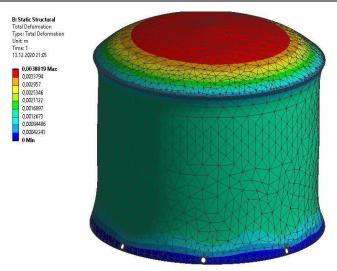


Рисунок 5 — Линейные деформации при расчете на прочность стенки резервуара с использованием пропеллерной мешалки

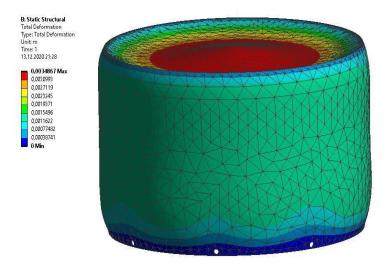


Рисунок 6 – Линейные деформации при расчете стенки на прочность резервуара с использованием струйного смесителя

Выводы: Проведен сравнительный анализ установки пропеллерных мешалок и струйных смесителей.

турбулентной Максимальное значение энергии - при установке струйных мешалок в резервуар. Конструкция струйных мешалок позволяет достигать максимальных скоростей потока благодаря эжектору. При установке струйных мешалок линии тока в резервуаре показывают, что вовлекается больше донных отложений, чем при установке пропеллерных мешалок или циклическом перемешивании. Существующие пропеллерные мешалки имеют лопасти, в которых застаиваются тяжелые фракции нефти, потому эффективность таких мешалок снижается. Лопасти пропеллера - 500-600 мм, оказывают дополнительное давление на стенку резервуара из-за осевого усилия.

Линии тока скорости говорят о том, что при применении пропеллерных мешалок в большей степени перемешивание идет в середине резервуара, при этом донные отложения задействованы меньше, а при применении

струйных смесителей, основная часть поступающей воды в резервуар идет на поднятие донных отложений и вовлечение ее в более легкие фракции.

В результате прочностного расчета полученные деформации для пропеллерной мешалки -3,802 мм, а для струйного смесителя -3,487 мм.

Из-за большего разброса, пропеллерная мешалка перемещает жидкость не только по оси, но и вертикально вверх (что показывает выпуклая крышка), поэтому часть мощности уходит на перемешивание более легких слоев.

В процентном соотношении линейных деформаций при одинаковой модели стенки РВС-10000 использование смесительной мешалки эффективнее на 8,29%.

Из-за большего разброса пропеллерная мешалка перемещает жидкость не только по оси, но и вертикально вверх (что показывает выпуклая крышка), поэтому часть мощности уходит на перемешивание более легких слоев, когда как

струйный смеситель вовлекает больше донных отложений.

Литература:

- 1. ГОСТ 31385-2016 Резервуары вертикальные цилиндрические стальные для нефти и нефтепродуктов. Общие технические условия (с Поправками)
- 2. Устройство для перемешивания жидкостей в резервуарах/ В. Ф. Салихова, Ю. Р. Галиакбаров, М. Ф. Галиакбаров, И. М. Галиакбаров: пат. 2189852 Рос. Федерация. № 2001110507/12; заявл. 17.04.2001; опубл. 27.09.2002, Бюл. 2002. 27. С. 405.
- 3. Галиакбарова Э.В., Бахтизин Р.Н., Галиакбаров В.Ф. Использование струйных гидравлических смесителей для интенсификации процессов подготовки нефти к переработке // Нефтегазовое дело. 2016. Т. 14. № 1. С. 145 149
- 4. Совершенствование систем предотвращения накопления донных отложений в резервуарах большой вместимости/ В. Н. Александров, В. А. Галканов, Ю. К. Кириллов, С. Н. Мальцев, Б. Н. Мастобаев, Р. Н. Бахтизин, А. А. Локшин // Нефтяное хозяйство. 2001. № 2. С.70.
- 5. Сидоров Г.М., Яхин Б.А., Ахметов Р.Ф. Моделирование работы статического смесителя (нефть вода) для обессоливания нефти и опытнопромышленное испытание // Успехи современного естествознания. 2017. № 2. С. 152 156

- 6. Галиакбаров В.Ф., Галиакбарова Э.В., Шварева Е.Н., Белозеров А.Е., Жолобова Г.Н. Повышение эффективности процессов обезвоживания, обессоливания и защелачивания нефти в смесительных аппаратах ЭЛОУ // Информационные технологии. Проблемы и решения: матер. Междунар. науч.-практ. конф. / редкол.: Ф.У. Еникеев и др. Уфа: Изд-во «Восточная печать», 2015. Т. 1. С. 188 190
- 7. Галиакбарова Э.В., Валявин Γ.Γ., Галиакбаров В.Ф. Внедрение струйного гидравлического смесителя пожарной для безопасности и эффективной работы резервуарных парков: ФГБОУ ВПО "Уфимский государственный нефтяной технический университет», г. Уфа, Российская Федерация ООО «НТ-Центр», г. Уфа, Российская Федерация
- 8. Чепур П. В., Тарасенко А. А. Особенности совместной работы резервуара и устройств размыва донных отложений винтового типа //Фундаментальные исследования. Техн. науки. 2015. №2. С.1671- 1675.
- 9. Галиакбаров В. Ф., Кононов О. В., Мастобаев Б. Н. Анализ и классификация существующих способов борьбы с отложениями в нефтяных емкостях. Уфа: Изд-во «Реактив», 2010. 40 с.
- 10. Ахметов С.А. Технология глубокой переработки нефти и газа: учеб. Пособие для вузов / С.А. Ахметов. СПб.: Недра, 2013. 544 с.

НЕСБАЛАНСИРОВАННОСТЬ КЛАССОВ ПРИ РЕШЕНИИ ЗАДАЧИ КЛАССИФИКАЦИИ ПОЛЬЗОВАТЕЛЕЙ СОЦИАЛЬНЫХ СЕТЕЙ ПО ПРОФЕССИОНАЛЬНОЙ ОРИЕНТАЦИИ

Обрубова Василиса Денисовна

Магистрант 2 курса кафедры информационных систем и программной инженерии "Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ),

город Владимир

Озерова Марина Игоревна

кандидат технических наук, доцент

"Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ),

город Владимир

IMBALANCE OF CLASSES IN SOLVING THE PROBLEM OF SOCIAL NETWORKS USER CLASSIFICATION FOR PROFESSIONAL ORIENTATION

Obrubova Vasilisa Denisovna

2nd year master's student of the Department of Information Systems and Software Engineering "Vladimir State University named after Alexander Grigorievich and Nikolai Grigorievich Stoletovs"

(VlSU),

Vladimir

Ozerova Marina Igorevna

candidate of technical sciences, associate professor

"Vladimir State University named after Alexander Grigorievich and Nikolai Grigorievich Stoletovs" (VISU),

Vladimir

DOI: 10.31618/nas.2413-5291.2021.2.68.449

АННОТАЦИЯ

Проблему несбалансированности данных часто недооценивают при решении задач классификации. Модель классификации, так на первый взгляд хорошо обученная на ваших данных и дающая хороший процент распознавания, может оказаться недостоверной. Рассмотрение данной проблемы в контексте