OPTICAL PROPERTIES OF GALLIUM PHOSPHIDE AND SCHOTTKY PHOTODIODES BASED ON IT
DOI:
https://doi.org/10.31618/nas.2413-5291.2021.2.65.393Keywords:
energy-band structure, absorption, gallium phosphide, p-n structure, band-gap width, barrier height, gold.Abstract
In this paper, the optical and luminescent properties of gallium phosphide (GaP) and spectral characteristics of GaP p-n, m-s structures for studying the energy-band structure of GaP were considered. Based on literature data, the absorption coefficient dependence was constructed near and above the fundamental absorption edge of the photon energy hν=2-6 eV in GaP (300 K) to discuss the obtained experimental results.
The results of the photosensitivity spectra study of Au-n-GaP, Au-p-GaP Schottky barriers are presented, which were produced by the chemical deposition of Au nanoscale (~15 nm) on the GaP surface.
By comparing the absorption spectrum of GaP with the photocurrent spectra of Au-n-GaP and Au-p-GaP structures in the visible and ultraviolet (UV) region of the spectrum, it has been established that usually the photocurrent (
References
Alferov Zh.I. Physics and Life.-2nd ed., Add. -M .: SPb: Nauka, 2001.-288 p.
Blank T.V., Goldberg Yu.A. Semiconductor photoconverters for the ultraviolet region of the spectrum // FTP. - 2003. - T.37. - Issue 9. - S. 1025-1055.
Galchina N.A., Kogan L.M., Soshchin N.P., Shirokov S.S., Yunovich A.E. Electroluminescence spectra of ultraviolet LEDs based on p-n-heterostructures InGaN / AlGaN / GaN coated with phosphors // FTP. - 2007. - T.41. - Issue 9. - S.1143-1148.
Tut Turgut, Gokkavas Mutlu, Inal Ayse, Ozbay Ekmel. AlxGa1-xN-based avalanche photodiodes with high reproducible avalanche gain // Appl. Phys. Lett. - 2007. - V.90. - No.16. - P. 16506 / 1-16506 / 3.4.
Schubert F. LEDs: Per. from English / Ed. A.E. Yunovich. - 2nd ed. - M.: Fizmatlit, 2008 .-- 496 p.
Zhilyaev Yu.V., Rodin S.N. Growth of Gallium Nitride Layers by Chloride Gas-Phase Epitaxy at a Low Source Temperature // Technical Physics Letters. - 2010. - T.36. - Issue 9. - S.11-16.
Ludin V.V., Nikolaev, Sakharov A.V., Brunkov P.N., Zavarin E.E., Tsatsulnikov A.F. Epitaxy of AlN layers with a high growth rate in a planetary MOC-hydride reactor // Technical Physics Letters. - 2010. - T.36. - Issue 24. - S. 33-39.
Sorokin L.M., Kalmykov A.E., Bessolov V.N., Feoktistov N.A., Osipov A.V., Kukushkin S.A., Veselov N.V. Structural characterization of GaN epitaxial layers on silicon: the effect of buffer layers // Technical Physics Letters. - 2011. - T. 37. - Issue 7. - P.72-79.
Buniatyan V.V., Aroutiounian V.M. Wide gap semiconductor microwave devices // J. Phys. D. - 2007. - V.40. - No. 20. - P.6355-6385.
Melebaev D. Photodetectors of ultraviolet radiation based on Au-oxide-n-GaP nanostructures. Trudy Int. scientific and technical conf. "Nanotechnology functional materials "(NFM'10). - St. Petersburg: Ed. Polytechnic University. - 2010. - S. 114-115.
Grachev V.M., Evstropov V.V., Eliseeva N.M. et al. Highly efficient diodes-sources of red radiation from GaP // FTP. - 1968. - T.2. - Issue 7. - S.1055.
Lorenz M.R., Pilkuhn M. Preparation and Properties of Solution Grown Epitaxial p-n – junctions in GaP // J. Appl. Phys. - 1966. - Vol. 37 .-- No.11. - P.4094-4102.
Baransky P.I., Belyaev A.E., Gorodnichy O.P., Makarenko V.G. Influence of ytterbium on the electrophysical properties of epitaxial layers of n-GaP // Phys. - 1988. - T.22. - Issue 1. - S.158-161.
Zhilyaev Yu.V., Panyutin E.A., Fedorov L.M. High-temperature dinistra based on gallium phosphide // Technical Physics Letters. - 2009. - T. 35. - Issue 17. - S.50-57.
Gavrilenko V.I., Grekhov A.M., Korbutyak D.V., Litovchenko V.G. Optical properties of semiconductors: A Handbook. - Kiev: "Naukova Dumka", 1987. - 607s.
Gribkovsky V.P. Theory of absorption and emission of light in semiconductors. - Minsk: "Science and Technology", 1975. - 464 p.
Lebedev A.I. Physics of semiconductor devices. - Moscow: Fizmatlit, 2008 .-- 488 p.
Oura K., Lifshits V.G., Saranin A.A., Zotov A.V., Katayama M. Introduction to Surface Physics -Moscow: Nauka, 2006 .-- 490 p.
Zegrya G.G., Perel V.I. Fundamentals of Semiconductor Physics. - M .: Fizmatlit, 2009 .-- 336 p.
Aspnes D.E., Studna A.A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV // Phys. Rev. B. - 1983. -Vol.27. - No.2. - P.985-1009.
Cohen M.L. and Bergstresser T.K. Band structures and Pseudopotential Form Factors for Fourteen Semiconductors of the Diamond and Zincblende Structures // Phys. Rev. - 1966. - Vol. 141. - No.2. - P.789-796.
Dean P. J., Faulkner R. A., Kimura S. Optical Properties of the Donor Tin in Gallium Phosphide // Phys. Rev. B. - 1970. - Vol.2.-No.10.-P.4062-4076.
Onton A., Morgan T.N. Effect of Uniaxial Stress on Excitons Bound to Bismuth in GaP // Phys. Rev. B. - 1970. - Vol.1. - No.6. - P.2592-2604.
Panish M.B., Casey H.C., Jr. Temperature Dependence of the Energy Gap in GaAs and GaP // J. Appl. Phys. - 1969.-Vol.40.-No.1.-P.163-167.
Phillips J.C. Dielectric Theory of Impurity Binding Energies. II. Donor and Isoelectronic Impurities in GaP // Phys. Rev. B. - 1970. - Vol.1. - No.4. - P.1545-1548.
Spitzer W.G., Gershenzon M., Frosch C.J., Gibbs D.F. // J. Phys. Chem. Sol. - 1959. - Vol.11. - P.339.
Spitzer W.G., Mead C.A. Barrier Height Studies on Metal-Semiconductor Systems // J. Appl. Phys. - 1963. - Vol. 34 .-- No.10. - P.3061-3069.
Spitzer W.G., Mead C.A. Conduction Band Minima of Ga (As1-xPx) // Phys. Rev. - 1964. - Vol. 133. - No. 3A. - P. A872-A875.
Zallen R., Paul W. Band structure of Gallium Phosphide from Optical Experiments at High Pressure // Phys. Rev. - 1964. - Vol. 134. - No.6A. - P. A1628– A1641.
Yunovich A.E. Radiative recombination and optical properties of gallium phosphide // Radiative recombination in semiconductors. - Moscow: Nauka, 1972. - pp. 224–304.
Spicer W.E., Eden R.K. // Proceedings of the IX Int. conf. by physical half-way. - Vol. 1. - Moscow. - 1968. - P.68. 31a. Morgan T.N., Welber B., Bhargava R.N. Optical properties of Cd-O and Zn-O complexes in GaP // Phys. Rev. - 1968.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
CC BY-ND
A work licensed in this way allows the following:
1. The freedom to use and perform the work: The licensee must be allowed to make any use, private or public, of the work.
2. The freedom to study the work and apply the information: The licensee must be allowed to examine the work and to use the knowledge gained from the work in any way. The license may not, for example, restrict "reverse engineering."
2. The freedom to redistribute copies: Copies may be sold, swapped or given away for free, in the same form as the original.