DECISION SUPPORT SYSTEM «FUNGUS» FOR RECOGNITION OF MUSHROOMS BASED ON DESCRIPTIONS OF THEIR APPEARANCE

Authors

  • K. Dushkin Artificial Intelligence Agency, Moscow
  • R. Dushkin Artificial Intelligence Agency, Moscow
  • S. Fadeeva Artificial Intelligence Agency, Moscow
  • V. Lelekova Artificial Intelligence Agency, Moscow

Keywords:

artificial intelligence, pattern recognition, decision tree, artificial neural network, natural language processing, diagnostics, chatbot, dialog interface, explicable artificial intelligence, mycology.

Abstract

This paper presents a methodology of developing a decision support system and implementing a chatbot «Fungus» to identify mushrooms by description of their appearance. «Fungus» increases the level of knowledge in the field of mycology and helps in gathering or purchasing mushrooms. This article shows the relevance of implementing a decision support system for training purposes and the method of its development on the example of the mushroom recognition system «Fungus».

Author Biographies

K. Dushkin , Artificial Intelligence Agency, Moscow

Analyst

R. Dushkin , Artificial Intelligence Agency, Moscow

Science and Technology Director

S. Fadeeva , Artificial Intelligence Agency, Moscow

Chief analyst

V. Lelekova , Artificial Intelligence Agency, Moscow

Analyst

References

Mihajlov V. A., Mihajlov S. V. Osobennosti razvitiya informacionnokommunikativnoj sredy sovremennogo obshestva // Sbornik nauchnyh trudov «Aktualnye problemy teorii kommunikacii». SPb., 2004. S. 34-52.

Messina Chris. 2016 will be the year of conversational commerce // A Medium Corporation. URL: https://goo.su/4jr5 (data obrasheniya: 07.03.2021).

Mobilnye operatory nazvali samye populyarnye u rossiyan messendzhery. URL: https://tass.ru/ekonomika/10544793 (data obrasheniya: 07.03.2021).

Radzhabov K.Ya. Uchebnoe posobie discipliny «Sistemy podderzhki prinyatiya reshenij» dlya napravleniya podgotovki Biznesinformatika, profil «Elektronnyj biznes». – Mahachkala: DGUNH, 2019 g. S. 17-24.

Strukturirovannye i nestrukturirovannye dannye: sravnenie i obyasnenie // Asu-analitika. URL: https://clck.ru/TrLVW (data obrasheniya: 22.03.2021).

V. V. Voronina, A. V. Miheev, N. G. Yarushkina, K. V. Svyatov Teoriya i praktika mashinnogo obucheniya: uchebnoe posobie. Ulyanovsk : UlGTU, 2017. S 52-56.

Uraev D. A. Klassifikaciya i metody sozdaniya chat-bot prilozhenij — M.: International scientific review, 2019. — 30 s.

Goldberg J. Nejrosetevye metody v obrabotke estestvennogo yazyka // per. s ang. A. A. Slinkina. M.: DMK Press, 2019. 282 s.

Abadi M., Barhem P., Chen D., Chen Zh., Devis E., Din Dzh., Devin M., Gemavat S., Irving Dzh., Isard M., Kudlur M., Levenberg Dzh., Monga R., Mur Sh., Myurrej D. Dzh., Shtejner B., Taker P., Vasudevan V., Varden P., Vik M., Yu Yu., Cheng K., Google Brain TensorFlow: Sistema dlya krupnomasshtabnogo mashinnogo obucheniya. Machine Learning Proceedings of the 12th USENIX Symposium on OSDI. Savanna, Dzhordzhiya, SShA, 2016. 21 s.

Vishnevskij M. V. Griby. Opredelitel gribov russkih lesov i polej. — M.: Eksmo-Press, 2014 g.

Arijeta A.B., Diaz-Rodrigez N., Del Sera H., Bennetot A., Tabik S., Barbado A., Garsiya S., Gil-Lopez S., Molina D., Bendzhamin R., Shatila R., Gerrera F., Obyasnimyj iskusstvennyj intellekt (XAI): Koncepcii, klassifikacii, vozmozhnosti i problemy na puti k otvetstvennomu iskusstvennomu intellektu. TECNALIA, Ispaniya, 2019. 72 s.

Brandtzaeg P. B., Folstad A. Why people use chatbots? / The 4th International Conference on Internet Science, November 2017. Lecture Notes in Computer Science. — URL: https://btfr.cc/dmz (data obrasheniya: 09.03.2021).

Metodicheskie materialy Federalnoj sluzhby po nadzoru v sfere zashity prav potrebitelej i blagopoluchiya cheloveka v Rossijskoj Federacii. — URL: https://goo.su/4Jr (data obrasheniya: 07.03.2021).

Gavryuchenkov D. V., Lemeshenko E. Yu. Massovye otravleniya gribami. — M.: Medicinskaya sestra. Professiya: teoriya i praktika, 2015. — S. 48-49.

Published

2021-05-14

Issue

Section

Статьи