PERCEPTRON IN BINARY CLASSIFICATION PROBLEMS

Authors

  • O. Mitina MIREA – Russian Technological University, Moscow
  • P. Lomovtsev MIREA – Russian Technological University Moscow

Keywords:

perceptron; binary classification tasks; neural networks.

Abstract

Currently, the volume of products manufactured by enterprises is growing in Russia. One of the serious problems for Russian enterprises is the creation of a system for automatic determination of the category of goods, which makes it possible to ensure error-free sorting of various objects. The next product must be attributed to the correct class, depending on its characteristics. 

The perceptron is one of the most popular methods for solving the classification problem. Automation of the process of separating goods by their properties will facilitate the work of the employees of the sorting center and eliminate the possibility of errors due to human factors.

Author Biographies

O. Mitina , MIREA – Russian Technological University, Moscow

Candidate of Science

P. Lomovtsev , MIREA – Russian Technological University Moscow

2nd year student

References

Goryainova, E.I. Metody binarnoj klassifikacii obektov s nominalnymi pokazatelyami / E.I. Goryainova // Zhurnal Novoj ekonomicheskoj associacii № 2 (14), C. 27 49. – 2017. – S. 35

Warren S. McCulloch and Walter Pitts. Logicheskoe ischislenie idej, otnosyashihsya k nervnoj aktivnosti = A logical calculus of the ideas immanent in nervous activity // Bulletin of Mathematical Biology. – New York: Springer New York, 1943. – T. 5, № 4. – S. 115—133.

Zhukov, D.A. Analiz kriteriev klassifikacii pri diagnostike funkcionirovaniya tehnicheskogo obekta / D.A. Zhukov // Mathematical modelling. – 2018. – S. 13

Robert Kabakov. R v dejstvii. – DMK-Press, 2018. – 588 s.

Ajvazyan S. A., Buhshtaber V. M., Enyukov I. S., Meshalkin L. D. Prikladnaya statistika: Klassifikaciya i snizhenie razmernosti. – Moskva: Finansy i statistika, 2019 – 571 s.

Habr.com [Elektronnyj resurs]. – Rezhim dostupa: https://habr.com/ru/company/ods/blog/328372/ – Data dostupa: 17.04.2021.

Mastickij, S.E. Statisticheskj analiz i vizualizaciya dannyh s pomoshyu R / S.E. Mastickij. – Moskva: 2017. – 172 s.

Kaggle.com [Elektronnyj resurs]. – Rezhim dostupa: https://www.kaggle.com/joshmcadams/oranges-vsgrapefruit?select=citrus.csv. – Data dostupa: 17.04.2021.

Published

2021-05-14

Issue

Section

Статьи