COMBINATORIAL RECONSTRUCTION OF TWO-DIMENSIONAL WORDS IN THE HYPOTHESIS SHIFT 1

Authors

  • M. Ulyanov Leading Researcher V.A. Trapeznikov Institute of control sciences of Russian Academy of Sciences

DOI:

https://doi.org/10.31618/nas.2413-5291.2021.1.73.495

Keywords:

two-dimensional words, de Bruyne multiorgraph, reconstruction of two-dimensional words

Abstract

The article considers the formulation of the problem of reconstruction of two-dimensional words by a given multiset of subwords, under the hypothesis that this subset is generated by the displacement of a two-dimensional window of fixed size by an unknown two-dimensional word with a shift 1. A variant of the combinatorial solution of this reconstruction problem is proposed, based on a two-fold application of the one-dimensional word reconstruction method using the search for Eulerian paths or cycles in the de Bruyne multiorgraph. The efficiency of the method is discussed under the conditions of a square two-dimensional shift window one having a large linear size.

Author Biography

M. Ulyanov , Leading Researcher V.A. Trapeznikov Institute of control sciences of Russian Academy of Sciences

Doctor of Technical Sciences, Professor

References

Simiu E. Haoticheskie perehody v determinirovannyh i stohasticheskih sistemah. — M.: Fizmatlit, 2007. —208 s.

Afrajmovich V., Ugalde E., Urias H. Fraktalnye razmernosti dlya vremen vozvrasheniya Puankare. — M.- Izhevsk: Institut kompyuternyh issledovanij, R&C Dynamics, 2011. — 292 s.

Lind D., Marcus B. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, UK. 1995. — 495 pp.

Matematicheskie metody dlya analiza posledovatelnostej DNK. — M.: Mir, 1999. — 349 s.

Lothaire M. Combinatorics of Words. Encyclopedia of Mathematics and its Applications. // Addison-Wesley Publishing Co., Reading, Mass. 1983. Vol. 17. —228 pp. http://www-igm.univ-mlv.fr/~berstel/Lothaire/

Lothaire M. Algebraic Combinatorics on Words. Cambridge University Press. 2002. — 455 с. http://www-igm.univ-mlv.fr/~berstel/Lothaire/.

Lothaire M. Algebraic Combinatorics on Words. 2005. — 610 c.

Ulyanov M.V., Tarasevich Yu. Yu., Eserkepov A. V., Grigorieva I. V. Characterization of domain formation during random sequential adsorption of stiff linear k-mers onto a square lattice // Phys. Rev. E.— 2020.— Oct.— Vol. 102, Iss. 4.— P. 042119 DOI 10.1103/PhysRevE.102.042119

Diffusion-driven self-assembly of rodlike particles: Monte Carlo simulation on a square lattice [Text] / Nikolai I. Lebovka, Yuri Yu. Tarasevich, Volodymyr A. Gigiberiya, Nikolai V. Vygornitskii // Phys. Rev. E. — 2017. — May. — Vol. 95. — P. 052130.

Smetanin Yu.G., Uljanov M.V., Shulga M.M. On Calculating the Entropy of 2D words over a Finite Alphabet // Proceedings of 2018 International Conference on Engineering Technologies and Computer Science. EnT 2018, 20–21 March 2018, Moscow, Russia, pp. 82–85 ISBN-13: 978-1-5386-5589-4, DOI 10.1109/EnT.2018.00025

Ulyanov M. V., Smetanin Yu. G., Shulga M. M., Eserkepov A. V., Tarasevich Yu.Yu. Characterisation of diffusion-driven self-organisation of rodlike particles by means of entropy of generalised two-dimensional words // Journal of Physics: Conference Series. — 2018. — December. — Vol. 1141. — P. 012137 DOI 10.1088/1742-6596/1141/1/012137

Smetanin Y. G. , M. V. Ulyanov Reconstruction of a word from a finite set of its subwords under the unit shift hypothesis. I. Reconstruction without for bidden words // Cybernetics and Systems Analysis. January 2014, Vol. 50, Issue 1, pp 148-156.

Published

2021-11-30

Issue

Section

Статьи